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The evolution of an AlfviM discontinuity in magnetohydrodynamics is investigated taking dissipative processes into account together 
with an arbitrary value for the angle of rotation of the transverse component of the magnetic field. 

The existence of a stationary structure in the form of a travelling wave for plane Alfv6n discontinuities has been 
demonstrated in [1]. ]in this paper we use a model equation for weakly-linear Alfv6n waves to obtain a self-similar 
solution describing the evolution of an arbitrary discontinuity. 

1. We start by considering a system of one-dimensional magnetohydrodynamic equations with fluid and magnetic 
dissipation. It is assuraed that all quantities depend only on the variables x and t. This system has the dimensionless 
form 
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Here u, a), w are tile components of the velocity vector, Bx, By, Bz are the components of the magnetic induc- 
tion vector, Re is the Reynolds number, and Rm is the magnetic Reynolds number. The system is reduced to 
dimensionless form using the Alfvgn velocity and characteristic values for the density, magnetic field, entropy and 
temperature. 

We represent B and Bz in the form By = B sin 0, Bz = B cos 0, where B is the magnitude of the transverse 
Y . . . . .  

component of the magnetic field and 0 is the angle of the direction of the magnetic field in the (y, z) plane. 
Below we make the important assumption that the dissipation is small, and is represented in the form 

e = IIR e + lIRm (1.1) 

where e is a small parameter. 
We change the independent variables using the formulae 

= £(X- tCOS00, ~ = £3t (1.2) 

(where 0t is the angle between thex axis and the unperturbed magnetic field, and cos 0t is the dimensionless Alfv6n 
velocity). 

Then, using the methods of [2], expanding all variables in powers of e and substituting into the original system, 
we obtain, as in [1], the model equation 
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=o (1.3) 

In Eq. (1.3) 0 is the lower-order term of the expansion in powers of ~ of the angle of rotation 0. Lower terms 
in the expansion of the components of v and B are expressed in terms of 0 as follows: 

By0 = sin(z sin0, B:o = sinet cos0, ~0 = -sinct sin0, w0 = sinct(I - cos0) 

Note that according to the expansion procedure the first non-zero terms in the expansions of the other quantities 
(p, u, s, T,p) have higher orders. It is also significant that if thermal conductivity and second viscosity are included 
amongst the dissipation mechanisms, the form of Eq. (1.3) is unchanged. 

2. We shall seek a self-similar solution of (1.3) in the form 

O = O(y), y = 2~ ~ - ~  (2.1) 

Substituting (2.1) into (1.3) we obtain the equation 

Y '2  

yO'+4O"+4O" SO dy=O (2.2) 
_oo 

Here and below the prime denotes differentiation with respect toy. Using the replacement 

O' = k, O" = g(k) (2.3) 

we obtain a first-order equation with a solution of the form 

~2 = _1~2 I n l k I - P  -k2c ,  c = - a  2 - 1/61na, a>O (2.4) 

In accordance with (2.3) we obtain a solution in parametric form with parameter 

dO = Xla-ld'L, dy = la-td'L (2.5) 

Substituting the first of the equations obtained into (2.4), we obtain the relation 

O(~,)=+Sf(~,)d~, where f (k ,a)= ~ l n  + a 2 - ~ ,  2 (2.6) 

which is shown in Fig. 1. The point (0, 0) in Fig. 1 corresponds to the state as y -* --oo; the points (0, 0.) and 
(0, -0 . )  correspond to two branches of the solution as y --> -oo. We now restrict our considerations to the case 
when 0 > 0, since the two branches are symmetric. When ~. varies from 0 to a the plus sign is chosen in formula 
(2.6); at the point (a, 0./2) the sign changes. 

The dependence of 0. on a is expressed by the formula 

It follows from (2.7) that 

t l  

O.(a) = 2~ f(Z,a)dX (2.7) 
0 

l i m O . ( a ) = O ,  limO.(a)=n, do*>O 
a--*O a--*- da 

Hence, the solution obtained gives the evolution of the Alfv6n discontinuity with an arbitrary angle of rotation 
of the transverse component of the magnetic field 0,, - ~  < 0. < x. 

The dependence of 0 ony  given by (2.7) is shown in Fig. 2. The curve 0(V) possesses central symmetry about 
the point with coordinates (o(a), 0./2) (the centre of discontinuity), where o(a) is given by the relation 

a 

o(a) = -4S f(~.,a)~d~ (2.8) 
0 

The tangent of the angle of inclination of the tangent to the curve 00') at the point a(a) is equal to a. 
We define the width of the discontinuity 8 to be the difference between the abscissae of the points of intersection 

of the tangent to the curve 0(y) at the point (a, 0./2) with the lines 0 = 0 and 0 = 0.. From Fig. 2 we have 6(a) = 
O.(a)/a, with 5(a) diminishing monotonically as a increases. In the original dimensionless variables the width of 
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Fig. 1. Fig. 2. 

the discontinuity A can be expressed using (2.1), (1.1) and (1.2) in the form 

A = O. (a)a -I (I / R e + I / R m)pj t J6 (2.9) 

Formula (2.9) agrees with the results of the solution of the problem of the velocity of spread of the Alfv~n 
discontinuity zone in the linear formulation [3]. 

The rate of widening of the discontinuity zone decreases as 0. increases. In the limit as 0. -~ it the rate of spread 
tends to zero (which is consistent with the fact that when 0, = 7t the Alfv6n discontinuity has a stationary structure). 
The centre of the di:arontinuity moves along the gas with a time-dependent velocity 

!/. =cosa- I / /aq(a) t -~( l /Re  +1 / Rm) if2 

where the function or(a) is'given by formula (2.8). 
Note that these things do not happen in the linear formulation. 
We wish to thank N. Ye. Sysoyev for useful discussions. 
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